Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113864, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421870

RESUMO

The neural mechanisms underlying novelty detection are not well understood, especially in relation to behavior. Here, we present single-unit responses from the primary auditory cortex (A1) from two monkeys trained to detect deviant tones amid repetitive ones. Results show that monkeys can detect deviant sounds, and there is a strong correlation between late neuronal responses (250-350 ms after deviant onset) and the monkeys' perceptual decisions. The magnitude and timing of both neuronal and behavioral responses are increased by larger frequency differences between the deviant and standard tones and by increasing the number of standard tones preceding the deviant. This suggests that A1 neurons encode novelty detection in behaving monkeys, influenced by stimulus relevance and expectations. This study provides evidence supporting aspects of predictive coding in the sensory cortex.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Neurônios/fisiologia
2.
Neurosci Biobehav Rev ; 149: 105190, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085022

RESUMO

Rapid detection of novel stimuli that appear suddenly in the surrounding environment is crucial for an animal's survival. Stimulus-specific adaptation (SSA) may be an important mechanism underlying novelty detection. In this review, we discuss the latest advances in SSA research by addressing four main aspects: 1) the frequency dependence of SSA and the origin of SSA in the auditory cortex: 2) spatial SSA and its comparison with frequency SSA: 3) feature integration in SSA and its implications in novelty detection: 4) functional significance and the physiological mechanism of SSA. Although SSA has been extensively investigated, the cognitive insights from SSA studies are extremely limited. Future work should aim to bridge these gaps.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Animais , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia
3.
Neurosci Bull ; 38(7): 785-795, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35212974

RESUMO

Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.


Assuntos
Percepção Auditiva , Corpos Geniculados , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Ratos , Ratos Wistar , Núcleos Talâmicos/fisiologia
4.
Neuroscience ; 455: 79-88, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33285236

RESUMO

The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing among these areas. Three tonotopically organized core fields, namely, the primary (A1), anterior (AAF), and ventral (VAF) auditory fields, as well as one non-tonotopically organized belt field, the dorsal belt (DB), were identified based on their response properties. Compared to neurons in A1, AAF and VAF, units in the DB exhibited little or no response to pure tones but strong responses to white noise. The few DB neurons responded to pure tones with thresholds greater than 60 dB SPL, which was significantly higher than the thresholds of neurons in the core regions. In response to white noise, units in DB showed significantly longer latency and lower peak response, as well as longer response duration, than those in the core regions. Responses to repeated white noise were also examined. In contrast to neurons in A1, AAF and VAF, DB neurons could not follow repeated stimulation at a 300 ms inter-stimulus interval (ISI) and showed a significant steeper ISI tuning curve slope when the ISI was increased from 300 ms to 4.8 s. These results indicate that the DB processes auditory information on broader spectral and longer temporal scales than the core regions, reflecting a distinct role in the hierarchical cortical pathway.


Assuntos
Estimulação Acústica , Córtex Auditivo , Vias Auditivas , Mapeamento Encefálico , Animais , Neurônios , Ratos , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...